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Precise exponential scaling with size is a fundamental aspect of
phenotypic variation. These allometric power laws are often
invariant across taxa and have long been hypothesized to reflect
developmental constraints. Here we test this hypothesis by in-
vestigating the evolutionary potential of an allometric scaling
relationship in drosophilid wing shape that is nearly invariant
across 111 species separated by at least 50 million years of evolution.
In only 26 generations of artificial selection in a population of Dro-
sophila melanogaster, we were able to drive the allometric slope to
the outer range of those found among the 111 sampled species. This
response was rapidly lost when selection was suspended. Only a
small proportion of this reversal could be explained by breakup of
linkage disequilibrium, and direct selection on wing shape is also
unlikely to explain the reversal, because the more divergent wing
shapes produced by selection on the allometric intercept did not re-
vert. We hypothesize that the reversal was instead caused by inter-
nal selection arising from pleiotropic links to unknown traits. Our
results also suggest that the observed selection response in the allo-
metric slope was due to a component expressed late in larval devel-
opment and that variation in earlier development did not respond to
selection. Together, these results are consistent with a role for pleio-
tropic constraints in explaining the remarkable evolutionary stability
of allometric scaling.
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Allometric scaling is a ubiquitous aspect of biological varia-
tion that is often strongly conserved across evolutionary

time and typically explains a large fraction of observed variation
in morphology, physiology, or life history (1–7). This evolution-
ary conservatism can be explained either by stabilizing selection
or by developmental or physiological constraints (8–17). Allo-
metric power laws have been thought to reflect developmental
constraints for nearly a century (6). Arguments of allometric
constraints were used to explain patterns of macroevolution by
architects of the modern synthesis such as Huxley (5), Simpson
(18), and Rensch (19), and played a major role in Gould and
Lewontin’s (20) criticism of the “adaptationist programme.” The
idea of allometric constraints may, at least partially, have origi-
nated from the multiplicative growth model underlying Huxley’s
derivation of the allometric power law for morphological traits.
Julian Huxley (5, 21) showed that when a trait is under com-

mon growth regulation with size, the relationship between the
trait Y and a size measure X is a power function of the form Y =
aXb, where a and b are constants. On a log–log scale, power
functions become linear, with log(a) representing the intercept
and b representing the slope of the allometric relationship log(Y) =
log(a) + b log(X). Allometric power laws summarize variation
among developmental stages (ontogenetic allometry), individuals in
a population (static allometry), and populations or species (evolu-
tionary allometry) (22). The three levels of allometry are related,
and a higher level of allometry can be expressed as a function of
allometry at lower levels (23). Limited potential for evolution at a

lower level in this allometric hierarchy would then cause constraints
at all higher levels (6, 23).
Because of their fundamental importance and their relation to

developmental constraints, there has been interest in testing the
evolvability of scaling relationships in general and, in particular,
the evolvability and evolutionary invariance of the static allometric
slope. In a recent review, Voje et al. (6) argued that, although there
is abundant evidence for evolvability of intercepts of static al-
lometric relations (i.e., mean shape), there are few clear dem-
onstrations of additive genetic variance or microevolutionary
changes in allometric slopes. Although there are many claims of
evolvable allometric slopes in the literature, most are problematic
due to various conceptual and methodological issues (see refs. 6
and 24–26).
One exception is Pavlicev et al.’s (27) finding of small but

significant heritabilities for several allometric exponents in an
intercross between mouse strains selected for large and small
body size. Another case comes from Tobler and Nijhout (28),
where 10 generations of selection on wing mass in the moth
Manduca sexta produced a small change in wing–body scaling
(see ref. 6 for a reanalysis). This was, however, an indirect re-
sponse, so it is unclear how free the slope was to evolve on its
own. The result is also based on observing the relationship in a
single generation, calling its replicability into question (see ref.
26 for further discussion). In the only study that performed ar-
tificial selection separately and directly on the allometric slope
and intercept, Egset et al. (29) found a clear response in the
intercept but not in the slope of a tail–body allometry in guppies
(Poecilia reticulata). The power of this study was also limited,
however, because it extended only over three generations. From
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comparative analyses, there is clear evidence of evolution of
static slopes on long time scales, but no clear cases of substantial
change over less than a million years (6).
Here we test the evolutionary potential of both the static al-

lometric intercept and slope of an aspect of wing shape allometry
in D. melanogaster. To do this, we use a series of large-scale
artificial selection experiments (58,046 measured flies in total)
and compare the selection response to the natural variation in
wing shape allometry obtained from a comparative study of 111
drosophilid species (20,345 measured flies).

Results and Discussion
In the Dipteran family Drosophilidae, the length of wing vein L2
shows tight and positive evolutionary and static allometries with
wing size (Fig. 1). The L2 vein intersects the leading edge of the
wing (vein L1) in a relatively proximal position in small wings
and more distally in larger wings (Fig. 1). Our comparative
analysis shows that both the intercept and the slope of the static
allometry have evolved, but at very low rates (Table S1). For the
intercept, the estimated standard deviation of change from a
Brownian motion model of evolution ranges from 0.026 to 0.042

A B

Fig. 1. Allometric relationships of males (A) and females (B) within and among 111 drosophilid species. Among-species (evolutionary) allometry (dashed line;
slope males = 1.282 ± 0.029, R2 = 0.95; slope females = 1.291 ± 0.029, R2 = 0.95), within-species (static) allometries (gray lines; average slope males = 1.091 ±
0.095, average R2 = 0.89; average slope females = 1.095 ± 0.096, average R2 = 0.92), and the selection responses (green and blue lines; see Fig. 2 for ex-
planation of color coding). The pictures illustrate our measure of L2 vein length (double-headed arrows) in a small (Dettopsomyia nigrovittata) and a large
(Idomyia mimica) species (encircled dots). Wing size is the square root of wing area. (Inset) The histograms show the among-species distribution of slopes with
the final slopes of the up- and down-selected populations in blue.
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Fig. 2. Change in allometric intercept (A), and allometric slope for males (B) and females (C) for the two replicates of each selection regime. The model fit
for the different selection regimes are given by the thick lines with ±SE in gray; see Tables S2, S3, and S4 for parameter estimates. In A, males have the lower
intercept (trait mean). In B, the outlier up-intercept generation 22 had a slope of −0.17. The selection stopped at generations 25 and 26 in the slope-selected
populations. In addition, we budded off a population from each replicate at generation 23 and maintained these new populations under relaxed selection.
Therefore, the generation axis has two scales in B and C, with the right-hand scale denoting generations under relaxed selection. The populations were
measured at each generation except during relaxed selection on slope, where measurements are indicated by circles.
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loge millimeters per million years depending on how deep the
phylogeny is considered to be. This corresponds to average
changes in relative L2 length of less than 4% per million years.
Similarly, the slope changed with an estimated standard deviation
of less than 0.037 slope units per million years. Hence, wing shape
allometry is strongly conserved in drosophilids.
It proved easy to change the allometric intercept (i.e., mean

shape) by selecting on the residuals of the log–log regression
(Fig. 2A). After seven generations of selection on the intercept,
the average length of vein L2 had increased by∼8.5% (from 1.34 mm
to 1.46 mm in males and from 1.58 mm to 1.70 mm in females) in
the “up-selected” populations and decreased by ∼6.5% (from
1.34 mm to 1.26 mm in males and from 1.58 mm to 1.47 mm in
females) in the “down-selected” populations. Hence, the average
length of vein L2 had become as large in the up-selected males as
in the down-selected females (Fig. 2A) whereas the sexual size
dimorphism remained unchanged. This selection response of
about 1% per generation is rapid evolution on a macroevolu-
tionary scale. Only four generations of artificial selection were
sufficient to produce a change comparable to the one observed
over a million years of evolution, as judged from the average
change in the comparative data. This change was also stable.
During 16 generations without artificial selection, the intercept
returned less than 0.15% per generation toward the original value
(Fig. 2A). Hence, natural selection on wing shape was weak in the
laboratory environment. These results show that mean shape is
highly evolvable in this population, as it is in many insects (30–35).
The stasis of wing shape among drosophilids must therefore be
due to other factors than the lack of genetic variation.
Selecting on the static allometric slope is challenging because

it is a property of a population that is not expressed at the in-
dividual level. To construct an individual-based selection index,
we used Huxley’s (5, 21) allometric model, which is based on
individual growth parameters (see SI Materials and Methods).
These individual growth parameters can be expressed as indi-
vidual allometries that relate to the static allometry in the same
way as ontogenetic allometries (see ref. 23). Under this model,
individuals that are near the bivariate phenotypic mean (i.e.,
average wing size and vein length) could have any breeding value

for slope, and selection of those individuals would contribute
nothing to the selection differential for slope. Therefore, al-
though natural selection on slope may operate through favoring
a particular trait–size relationship and generate high fitness for
individuals at the bivariate phenotypic mean, a ridge-like selec-
tion index would be inefficient for generating selection on slope.
Instead, we derived a saddle-shaped “fitness” function that si-
multaneously maximizes selection on slope while minimizing
selection on size, variance in size, and the allometric intercept
(Fig. 3 and SI Materials and Methods). The result was that clus-
ters of larger and smaller than average flies were selected within
each sex in each generation.
The responses of the allometric slopes were erratic, but, after

26 generations, the male and female slopes had changed from
1.08 and 1.09 in the original populations to 1.39 and 1.42 in the
up-selected populations and to 0.84 and 0.78 in the down-
selected populations (Fig. 2 B and C). These are large changes,
resulting in allometric slopes in the outer range of those found in
the sampled species (Fig. 1). The allometry in the original
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Fig. 3. Saddle function used as selection index (grayscale legend). Examples of selection to increase (A) and decrease (B) the allometric slope (thick regression
lines). The 20 individuals (filled circles), out of 100, with the highest selection indices were selected. The thin regression lines give the allometric slope among
the selected individuals. Females from generation zero (A) and one (B) in replicate A are shown.

Table 1. Response to selection on slope in the unstarved
populations (see Table S3), given in contrasts between
treatments (with SE)

Treatment contrast Difference

Males
Up – Down 0.0212 ± 0.0078
Up – Control 0.0112 ± 0.0078
Down – Control −0.0100 ± 0.0078

Females
Up – Down 0.0245 ± 0.0078
Up – Control 0.0114 ± 0.0078
Down – Control −0.0131 ± 0.0078

The units are change in allometric slope per generation. A model with
only a common linear effect for each sex instead of an effect of each
treatment (Up, Down, and Control) for each sex increase the AIC-score by 38.
The same statistical model is used to produce the results of this table and
Table S3, but the relevant fixed effects are here expressed as contrasts.
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population implies that a 10% increase in wing size increased L2
length by 10.9% (for females). After 26 generations of selection,
this had changed so that a 10% increase in wing size would now
increase L2 length by 14.2% in the up-selected females and 7.8%
in the down-selected females. Figs. S1 and S2 give a visual rep-
resentation of the response to selection on the wing outline.
The statistical support for selection responses in the static

allometric slope is strong, as judged from the Akaike Informa-
tion Criterion (AIC; Table 1). The average responses of the up-
and the down-selected lines were significantly different from
each other, although not from the average of the two controls
(Table 1). The relationship between the change in slope and a
measure of cumulative selection strength was also statistically
significant for all comparisons except for the males in one of the
down-selected populations (Fig. 4), and several generations after
selection ended, the average allometric slopes of the up- and
down-selected lines still differed significantly from each other
and from the starting value (Fig. 2 B and C). We noticed an
erratic and diverging behavior of the allometric slopes in the
control lines (Fig. 2 B and C). This strange behavior may, at least
partly, be due to smaller sample size in these lines, resulting in
less precise estimates of the slopes.
The precision with which the allometric slope can be esti-

mated depends on the range of sizes investigated. We therefore
expected that an increased range of sizes would improve our
ability to select on the allometric slope by making it easier to
detect flies with extreme breeding values for allometric slope.
We thus performed the same selection experiment on indepen-
dent populations in which size variation was increased by starving
half of the larvae over the last 2 d of development. These popula-
tions produced adult flies with a much wider range of sizes. Contrary
to our expectation, the allometric slope did not respond to selection
in these “starved” populations (Fig. 2 B and C and Table S5).

To understand the lack of selection response in these “starved”
populations, we subjected flies from the unstarved slope-selected
populations to the same type of starvation one generation after
selection ended. Surprisingly, the entire evolved difference in the
allometric slope disappeared in these starved flies. The difference
in static allometric slope between the up- and the down-selected
populations was only 0.022 ± 0.061 when the flies were starved,
compared with 0.271 ± 0.061 in their unstarved siblings in the same
generation (averaged over replicates and sexes). This genotype-by-
environment interaction and the erratic selection response un-
derscore the need for an experimental design with replicated
controlled environments when investigating genetic differences in
static slopes (as argued in ref. 26). We hypothesize that the de-
velopmental processes responsible for the observed selection re-
sponse in allometric slope are acting during the late third instar,
when growth is precluded in the starved flies. The allometric re-
lations may thus be the result of developmental “palimpsests” (36),
where subsequent developmental processes are written on top of
each other to partially mask variation created at different stages.
Our results suggest that some of these processes are evolvable,
causing a selection response in the slope, whereas others constrain
small flies to remain on the original static allometric line.
A potentially confounding source of response to selection is the

creation of linkage disequilibrium between alleles that affect wing
size and alleles that affect L2 length. Such linkage disequilibrium
could have generated a change in the allometric slope without
changes in allele frequency. For example, an association between
alleles that increase wing size with alleles that increase L2 length
would increase the allometric slope between wing size and L2
length. To minimize linkage disequilibrium, we used disassortative
mating when selecting on the static allometric slope. Female flies in
the cluster above mean wing size were mated with male flies from
below and vice versa (see Materials and Methods), so that re-
combination would be maximally effective in breaking up linkage
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Fig. 4. The selection response of the allometric slope as a function of a measure of cumulative selection strength in males (A) and females (B). The cumulative
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disequilibrium. However, this does not completely prevent associ-
ation between alleles, and we need to consider if the reversal of the
response could have been due to breakup of linkage disequilib-
rium. Assuming an average recombination fraction of r = 0.365
between random loci in D. melanogaster (37), we estimated that the
maximum fraction of the response that could be due to linkage
disequilibrium averaged only 19.9 ± 22.6% and 14.3 ± 24.0% in
males and females, respectively.
Nongenetic inheritance, such as parental (e.g., maternal) ef-

fects, may, in principle, affect the response to selection (38) but is
not likely to be important in this case, as there are no indications
of heritable nongenetic effects on wing shape in drosophilids.
We consider natural selection to be the most likely cause of

the reversal toward the ancestral allometric slope. However,
natural selection for restoring optimal wing function, for exam-
ple due to selection for flight or courtship behavior, does not
seem to be strong in the laboratory environment. In the presence
of such selection, we expect that the intercept-selected pop-
ulations would also have rapidly returned to their starting value.
These populations instead showed little reversal of the selection
response over an even longer time period, despite being more
different from the initial wing shape than the slope-selected
populations. Therefore, the more likely alternative is that the
evolutionary change in allometric slope generated deleterious
pleiotropic responses in other aspects of the phenotype, resulting
in strong natural selection in the laboratory environment.
We have shown that a phylogenetically nearly invariant allo-

metric slope can evolve rapidly under selection, but that this
seems to generate countervailing natural selection to return the
allometric slope to its initial value. This suggests that conserved
allometric scaling may be best explained by pleiotropic con-
straints (12). Riedl (39, 40) proposed that fundamental de-
velopmental processes may become increasingly constrained, or
burdened, by other processes that interact with or depend on
them. Under this hypothesis, aspects of the developmental sys-
tem that lead to precise allometric scaling also affect other as-
pects of organismal form and function, leading to deleterious
pleiotropic effects when they are altered. If true, this hypothesis
could provide a general explanation for the striking evolutionary
conservatism of allometric power laws, while still leaving open
the possibility for allometries to be optimized by natural selec-
tion over long time scales through compensatory mutations.

Materials and Methods
Comparative Data. Species were obtained by collection from the wild, from
the Drosophila Species Stock Center, or from other collectors. The full list
of 111 taxa, specifications, their collection locations, and sample sizes are
reported in Table S6. Flies were reared using combinations of food, temper-
ature, and rearing environments suggested to be optimal for each particular
species based on the instructions from the source or from published sources.
Wild-collected specimens were measured when we were unable to rear the
flies in the laboratory. Most of the 111 taxa are currently classified in the
paraphyletic genus Drosophila or to genera in the subfamily Drosophilinae (41,
42). In addition, we included two species of steganine drosophilids and five
outgroup species from other families. Four drosophilid species are represented
by more than one subspecies. Most species had sample sizes of around 200
measured flies, and the total sample size was 20,345.

Wing Measurements. The full procedure for imaging wings and for estimating
vein locations and corresponding landmarks has been described by Houle
et al. (43). In short, the left wing of a live CO2-anesthetized fly is immobilized
in a suction device, a digital image of the wing is obtained, and the program
Wings3.8 (44) is used to fit cubic B-splines to the wing veins, from which the
coordinates of landmarks and semilandmarks are extracted. The length of
vein L2 was estimated as the straight-line distance between the humeral
break in the costa and the distal end of L2. The square root of wing area was
used as a measure of wing size. See Fig. S3 for detailed information on the
wing measurements.

Derivation of Populations for the Selection Experiment. The initial population
was made by intercrossing 30 inbred lines obtained from the Drosophila
Genetic Reference Panel (45). This population was allowed to mate freely for
one generation before being divided into the selected populations. We
maintained 16 different populations in this experiment: two selected for
increase and two for decrease in allometric intercept, two for increase and
two for decrease in allometric slope, two for increase and two for decrease
in slope with the starvation treatment, and two unstarved and two starved
controls. Details are given in SI Materials and Methods.

Rearing of Selected Populations. Details are given in SI Materials and Methods.

Justification of the Allometric Slope Selection Index. Details are given in SI
Materials and Methods.

Selection Procedure. In the two replicate control populations, 20–25 virgin
females and 20–25 males were chosen haphazardly and imaged before be-
ing divided into two vials to produce the next generation.

In the two replicate starved control populations, 50 virgin females and 50
males were imaged, then divided haphazardly into four groups of 25 flies
each (12 or 13 of each sex). Two groups were placed in vials and their larvae
fed normally; the other two were placed in “egg layers,” and their larvae
underwent the starvation treatment (see SI Materials and Methods). Note
that these two populations were started later in the experiment (at gener-
ation 5 of the other populations).

Two replicate populations were maintained for each direction (up and
down) of selection on the allometric intercept. Each generation in each
population, 100 virgin females and 100 males were chosen haphazardly and
imaged. From these, 20–25 of each sex were selected to produce the next
generation, using the selection index

Wint = β1ðx − xÞ+ β2ðy − loge½a�−bxÞ,

where x is loge wing size (square-root wing area), x is the average of x, y is
loge L2 length, loge[a] is the allometric intercept, b is the allometric slope,
and the term (y - loge[a] - bx) is the residuals of the allometric regression. For
the up selection, β2 = 1, and for the down selection, β2 = –1, whereas β1 was
optimized to reduce selection on size (see SI Materials and Methods). The
selection index was fitted independently each generation within each se-
lected population, and the flies were stored in individual vials from imaging
until the selection index score of each fly was calculated. Selection on the
intercept was maintained in both replicates (A and B) for seven generations
for both the up and the down directions. After this, the A replicates were
discarded, whereas up- and down-selected populations in replicate B were
maintained with relaxed selection (i.e., the same mating regime as in the
control populations) for an additional 16 generations.

For each direction (up and down) of selection on the allometric slope, we
kept two replicate populations (A and B). Each generation in each population,
100 virgin females and 100 males were imaged, of which 24 were selected
using the selection index

Wslope = βxðx − xÞ+ βy ðy − yÞ+ 1
2
γxðx − xÞ2 + γxyðx − xÞðy − yÞ,

where γxy = 1 for the up selection (increase in slope) and -1 for the down
selection (decrease in slope). This function was optimized by choosing values
of the parameters βx, βy, and γx, to minimize selection on the means of x and
y and on the variance of x (see SI Materials and Methods). The selection
index was fitted independently each generation within each selected pop-
ulation, and the flies were stored in individual vials after imaging until the
selection index score of each fly was calculated. To prevent linkage dis-
equilibrium, we enforced disassortative mating on size by first dividing the
selected flies into two groups, one containing the largest 12 females and
smallest 12 males, the other with the smallest 12 females and largest 12
males. Each of these groups was then split at random into two groups of six
males and six females, and each such group was placed in vials with another
group of opposite-sex flies of contrasting size. These flies were allowed to
mate and lay eggs overnight. Selection was carried out for 26 generations in
replicate A and for 25 generations in replicate B. After this, we maintained
the populations for an additional 13 generations in replicate A and 14
generations in replicate B under relaxed selection (i.e., the same mating
regime as the control populations). At generation 23, we split off a pop-
ulation from each of the replicates and maintained these new populations
under relaxed selection for 15 generations. At several points during the
period of relaxed selection, we imaged 100 males and 100 females from
each of the populations (see Fig. 2B).

Bolstad et al. PNAS Early Edition | 5 of 6

EV
O
LU

TI
O
N

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505357112/-/DCSupplemental/pnas.201505357SI.pdf?targetid=nameddest=ST6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505357112/-/DCSupplemental/pnas.201505357SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505357112/-/DCSupplemental/pnas.201505357SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505357112/-/DCSupplemental/pnas.201505357SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505357112/-/DCSupplemental/pnas.201505357SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505357112/-/DCSupplemental/pnas.201505357SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505357112/-/DCSupplemental/pnas.201505357SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505357112/-/DCSupplemental/pnas.201505357SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505357112/-/DCSupplemental/pnas.201505357SI.pdf?targetid=nameddest=STXT


We also maintained two replicate starved slope-selected populations for
each direction of slope selection. These were subjected to the same selection
regime as the unstarved slope-selected populations but reared using the
starvation treatment. Selection was carried out for 19 generations in these
populations. Details are given in SI Materials and Methods.

Statistical Analyses. To estimate the rate of evolution for the allometric in-
tercept and slope, we fitted a Brownian-motion model of evolution using a
phylogenetic mixed model (46). Because the depth of the phylogeny is highly
uncertain (47), we used both a best guess of 133 million years and a con-
servative estimate of 50 million years to estimate the rate.

For the selection experiment, changes and differences in allometric intercept
and slope of loge vein L2 length on logewing size (square-root wing area) were
analyzed by a series of linear mixed-effects models because of the hierarchical
structure of the data. Details are given in SI Materials and Methods.
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SI Materials and Methods
Derivation of Populations for the Selection Experiment. The 30 in-
bred lines from the Drosophila Genetic Reference Panel (45)
used to form the initial population were RAL 149, 324, 383, 486,
563, 714, 761, 787, 796, 801, 802, 804, 808, 819, 821, 822, 832,
843, 849, 850, 853, 859, 861, 879, 887, 897, 900, 907, 911, and
913. For the initial set of crosses, healthy lines were crossed with
lines that were less fecund. Each cross, including reciprocals, was
set up in six replicate vials of five or six females and three males.
Virgin females and males were collected from the F1 offspring,
and the next round of pairwise crosses was set up once a suffi-
cient number of flies had been obtained. This procedure was
continued until a single population resulted.
To found the initial (Generation 0) populations subjected to

intercept and slope selection, we sampled 100 flies of each sex
from the base population. For each of the starved control starting
populations, we sampled 50 flies of each sex, and, for each of the
well-fed control starting populations, we sampled 40 flies of each sex.

Rearing of Selected Populations. Throughout the experiment, all of
the selected populations (except those undergoing the starvation
treatment; see below) were reared in 22-mm-diameter cylindrical
vials containing ∼4 mL of food medium composed of yeast, corn
flour, sucrose, propionic acid, and agar, plus an antibiotic (cycled
between streptomycin, penicillin, and tetracycline). Vials were
stored in an incubator at 25 °C, 55–65% relative humidity, with a
12:12 h light/dark cycle. In all populations, flies were split into
several vials for rearing, with roughly equal numbers of males
and females. The number of adult flies in each vial was kept
sufficiently low (less than 13 flies of each sex) to avoid high larval
densities. Adult flies were allowed to lay eggs for 1 d, then
transfered to new vials for an additional day, then discarded. To
encourage remating, male and female parents were separated at
the first transfer, and placed in vials with opposite-sex flies from
a different vial. When flies began to eclose, virgins were collected
at 8-h intervals and separated by sex. Virgins were kept in vials
with no more than 10 females or 15 males until imaging.
In a second set of populations, we attempted to generate more

efficient selection on the allometric slope by increasing the
variance in size, potentially reducing the sampling variance in the
estimation of the allometric slope. This was achieved by subjecting
half the larvae in those populations to a starvation treatment,
similar to that of Stillwell et al. (48). Larvae prevented from
feeding after they reach a critical size for pupariation (approxi-
mately the start of the third larval instar) can eclose, but forego
the most rapid period of growth, resulting in very small adults;
following starvation, adults can have a thorax length as small as
half the average size of fully fed flies. Thus, combining starved and
normally reared flies greatly increases the variance in size among
flies. Each generation, the selected adult flies in the starved
populations were split evenly into two groups: One half was
allowed to lay eggs in vials as described above, and their larvae
were fed throughout the larval phase. The other half was confined
overnight in a 90-mm Petri dish with standard food medium,
during which time they mated and laid eggs. The following day,
adults were removed from these egg layers, and the Petri dishes
were placed in an incubator for 4–6 d. The dishes were checked
regularly, and when most of the larvae appeared to have reached
critical size for survival to adulthood, they were removed from
the dish and placed in vials containing agar only, with no more
than 20 larvae per vial. These larvae continued to consume the
nonnutritive agar medium for several days before pupariation.

Because the timing of development varied greatly among the
selected populations, we used the average size as determined by
visual inspection to determine when the larvae had reached the
critical size. Equal numbers of adults from starvation and normal
treatments were imaged in the starved populations.
Later in the course of the experiment, the fecundity of the two

replicate starved slope-selected populations decreased. To
counter this, we induced females to lay more eggs by removing the
males from egg layers after the first day and replacing them with
mated females from a stock bearing the Tubby (Tb) and white (w)
mutations. The increased density of ovipositing females en-
couraged further egg laying by the selected females. The Tb
phenotype enabled us to identify and remove the mutant larvae;
mutant adults that remained were identified by the w eye color
mutation and removed. Even with this method, however, we
were sometimes unable to collect the full 200 virgin flies from
each population toward the end of the experiment.

Justification of the Allometric Slope Selection Index.We developed a
selection index based on Huxley’s allometric model. Huxley (5)
showed that a trait’s size (Y) relates to body size (X) by an al-
lometric relation if both trait size and body size depend on some
common growth variable G, such that dX/dt = uXG and dY/dt =
vYG, where u and v are specific constants for body size and trait
size, respectively, and t is the time of growth. Solving these dif-
ferential equations for X and Y at some developmental stage
(e.g., t = adult) gives the power functions

X =X0Qu,
Y =Y0Qv,

where X0 and Y0 are initial values for X and Y, and Q is G
integrated over [t = 0, t = adult]. Transforming these power
functions to the natural log scale gives

x= x0 + uq,
y= y0 + vq,

where the lowercase letters x, y, and q are used to indicate loge-
transformed variables. From this, we get the allometric equation

y= loge½a�+ bx,

where the allometric slope b = v/u, and the allometric intercept
loge[a] = y0 – bx0. We are interested in selecting on the ratio v/u.
Assuming that u and v as well as relative fitness (w) are multi-
variate normally distributed with no correlation between u and v,
the selection differential of the ratio b = v/u is given by

S½b�=Cov
hv
u
,w

i

= Cov
�
1
u
,w

�
v+E

�
1
u
ðv− vÞðw− 1Þ

�

≈
1
u

�
Cov½v,w�−E

�
1
u

�
Cov½u,w�

�

=
1
u

�
S½v�− bS½u��,

where E[.] or one overbar denotes the expectation, S[v]=Cov[v, w],
S[u] = Cov[u, w], and b=E½v=u�. The approximation is from the
Taylor series 1=u≈ 1=u− ðu− uÞ=u2, and is a good approximation
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when the coefficient of variation (CV) of u is small. From this, we
see that the selection differential on v/u is proportional to the
selection differential on v (S[v]) minus the selection differential
on u (S[u]) weighted by the average allometric slope. To obtain
these selection differentials, we use the standard quadratic relative
fitness function w = μ + βxx + βyy + ½γxx

2+ ½γyy
2+γxyxy, where μ is

the intercept and βx, βy, γx, γy, and γxy can be interpreted as the
standard linear and quadratic selection gradients of x and y. We
scale so that x= 0 and y= 0; the selection differentials S[v] and S[u]
as functions of the selection gradients are then given by

S½v�=Var½q�Var½v��γy + uγxy
�
,

S½u�=Var½q�Var½u��γx + vγxy
�
.

Substituting this into the equation for the selection differential on
b, we obtain

S½b�= 1
u
Var½q�

�
Var½v�γy − bVar½u�γx + u

�
Var½v�− b

2
Var½u�

	
γxy

	
.

[S1]

This equation shows that disruptive selection on y (positive γy)
and stabilizing selection on x (negative γx) both select for in-
creased allometric slope. A positive correlational selection gra-
dient (γxy), on the other hand, contributes to increased allometric
slope only when

Var½v�> b
2
Var½u�.

This is because the correlational selection generates a selection
differential both on Cov[x, y] and on Var[x]. Assuming that the
average allometric slope (b) equals the ratio Cov[x, y]/Var[x], we
can simplify Eq. S1 by ensuring that there is no selection on Var
[x]. To accomplish this, we use the following argument from
standard quantitative genetic theory: We know that the selection
differential of the phenotypic covariance matrix (S[P]), when
there is no linear selection, is given by S[P] = PγP, where γ is
the matrix of quadratic selection gradients. Under the assump-
tion of multivariate normality, we can derive the selection dif-
ferential of the variance of x,

S½Var½x��=Var½x�2γx + 2Var½x�Cov½x, y�γxy +Cov½x, y�γy.

This shows that there is no selection differential on the
variance of x (S[Var[x]] = 0) when γx =−2bγxy and γy = 0.
Substituting γx =−2bγxy and γy = 0 into Eq. S1 gives

S½b�=Var½q�
�
b
2
Var½u�

�
2
u
− 1

�
+Var½v�

�
γxy.

Biologically realistic values of u are less than 1 and certainly not
higher than 2, because the amount of resources allocated to X is
most likely a diminishing function of the total amount of re-
sources available (Q). This means that this selection differential
of the allometric slope is proportional to γxy when there is no
selection on the variance of x.
The average individual allometric slope (b) in the above

models relates to the observed static allometric slope, bstatic =
Cov[x, y]/Var[x], in the same way as the average ontogenetic
allometric slope relates to the static allometric slope (see ref.
23). In essence, this means a change in b is expected to give the
same change in bstatic, and that b = bstatic if both the individual
allometric intercept (loge½a�) and slope (b) are uncorrelated
with size (x).
Based on the above results, we constructed the selection index

for the slope as

Wslope = βxðx− xÞ+ βyðy− yÞ+ 1
2
γxðx− xÞ2 + γxyðx− xÞðy− yÞ,

where γxy = 1 for the up selection (increase in slope) and −1 for
the down selection (decrease in slope). We did not directly use
βx = 0, βy = 0, and γx = –2bγxy, because it is unlikely that the
sample distribution is perfectly multivariate normal. Instead, the
function (Wslope) was optimized for the parameters βx, βy, and γx,
to generate as little selection as possible on the means of x and y
and on the variance of x.

Selection Procedure. For the intercept selection, we wanted the
average size of the selected individuals to be as similar as possible
to the average size of all individuals in the population (i.e., no
selection on size). To do this, we searched a wide range of values
of β1 to find the value that minimized the value of (S[x])2, where
β1 is the directional selection gradient on size and S[x] is the
selection differential on size (i.e., the difference between the
mean size of the selected individuals and the mean size of all
individuals in the population).
For the slope selection, the optimization was done in three rounds

to estimate the parameters βx, βy, and γx. First, we searched through
a range of different values for γx with βx = 0 and βy = 0, to minimize
(S[Var[x]])2, where S[.] denotes the selection differential. Next, we
searched through a wide range of combinations of values of βx and
βy to minimize ðS½x�=xÞ2 + ðS½y�=yÞ2 with γx at its current optimized
value [i.e., the value that gave the lowest (S[Var[x]])2]. Finally,
we did a second round of searching through different values of
γx to minimize (S[Var[x]])2, but this time with βx and βy at the
optimized values.

Statistical Analyses of the Comparative Data. To estimate the rate of
evolution for the allometric intercept, we fitted a Brownian-motion
model of evolution using the phylogenetic mixed model (46)

yijk = ui + bixij•+ aj + «ijk,

where y is loge L2 length, x is loge wing size (square root of wing
area), u is the common intercept for each sex, b is the evolution-
ary allometric slope for each sex, a is the phylogenetic effect, and
« is the residual term. The subscripts i, j, and k, represent sex,
species, and individual, respectively, and subscript • means
the average taken over the indicated level. The residuals are
assumed to be independent identically normally distributed,
whereas the phylogenetic effects are assumed to be distributed as
a ∼ N(0, σ2rate A), where A is a phylogenetic relatedness matrix in
which the elements are the shared branch length of species
scaled to unit depth. This matrix was computed from a published
phylogeny (42) with two species added based on other published
evidence: Drosophila arizonae (41) and D. athabasca (49). Note
that six species were not included in this analysis because they
were not in our phylogeny (Homoneura sp., Leucophenga sp.,
Monochaetoscinella sp., Neogriphoneura sordida, Samoaia leonen-
sis, and Thaumatomyia sp.). The rate (increase in variance) per
million years is given by σ2rate/t, where t is the depth of the phy-
logeny in millions of years. Because the depth of this phylogeny
is highly uncertain (47), we used both a “best guess” of 133
million years and a conservative estimate of 50 million years to
estimate the rate.
To estimate the rate of evolution for the allometric slope, we

fitted a similar model as for the intercept,

yijk − yij• = bi
�
xijk − xij•

�
+ aj

�
xijk − xij•

�
+ «ijk,

where b is the common within-species slope for each sex sepa-
rately. The phylogenetic effects of the slope (aj) are assumed to
be distributed as the phylogenetic effects of the intercept, and
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the residuals («ijk) are assumed to be independent identically
normally distributed. The per-million-year evolutionary rate for
the slope was calculated in the same way as for the intercept.
The static allometric relationships within each sex for each

species, presented in Fig. 1, were estimated by standard linear
regression models with loge L2 length as the response variable
and loge wing size as the explanatory variable. The evolu-
tionary allometry for each sex was a linear regression on the
species means with loge L2 length as response and loge wing
size as predictor.

Statistical Analyses of the Selection Experiment. Changes and dif-
ferences in allometric intercept and slope of loge vein L2 length
on loge wing size (square-root wing area) were analyzed by a
series of linear mixed-effects models because of the hierarchical
structure of the data.
For the selection on the intercept, we wanted to estimate the

following parameters: the average wing size (intercept) in the
starting generation for each sex i (ui), the average allometric
slope for each sex (bi), the linear change per generation of the
intercept for all treatments j (up selected, down selected, and
control) nested within sex (a1ij), the quadratic response to se-
lection of the intercept for the up- and down-selection treatment
for each sex separately (a2ij), and the linear effect of relaxed
selection on the intercept for the up and down selection treat-
ment for each sex separately (a3ij). To estimate these parameters,
we fitted a broken-stick mixed model with loge vein L2 length
(yijklm) as a function of loge wing size centered within sex
(xijklm − xi•••) and generation (t),

yijklm = ui + bi
�
xijklm − xi•••

�
+ a1ijt1 + a2ijt21K + a3ijt2K

+ cijkt1 + dijkl + «ijklm,

where subscripts k, l, and m denote population (nested within
treatment), generation (nested within population), and individ-
ual, respectively. Subscript • means the average taken over the
indicated level. We implemented the broken-stick regression
model through the values of t1 and t2: t1 represents generations
0–7 for the selected populations (treatment up and down) and
generations 0–23 for the controls. For the selected populations,
t1 takes the values 0–7 for generations 0–7 and value 0 for gen-
erations 8–23. For the controls, t1 takes the values 0–23 for
generations 0–23. The other generation variable, t2, represents
generations 8–23; t2 takes the values 0 for generations 0–7 and 0–
15 for generations 8–23. The indicator variable K takes the value
0 for the control treatment and 1 for the up and down selection
treatments. We also included two random effects (cijk and dijkl).
The first random effect, cijk, is the deviation of each replicated
population nested within treatment from the rest of the model,
assumed to be independent identically normally distributed. The
second random effect, dijkl, is the deviation of each generation
(nested within population) from the rest of the model. This
second random effect is assumed to be multivariate normally
distributed with a variance term multiplied with a relatedness
matrix (A) to account for temporal autocorrelation. The diago-
nal elements of A are unity, and the off-diagonal elements are
given by 0.5Δt, where Δt is the difference in number of genera-
tions for elements of A belonging to the same population, and
zero for all other elements. The residuals («ijklm), the deviation of
each individual fly from the model prediction, are assumed to be
independent identically normally distributed.
For the selection on the slope, we wanted to estimate the fol-

lowing parameters: the common allometric slope for all treat-
ments in the starting generation for each sex i separately (bi) and
the linear change in allometric slope per generation t for each
treatment j (up selected, down selected, and control) nested
within sex (aij). To estimate these parameters, we used a random

regression model where we used loge vein L2 length centered on
the within-generation sex mean for each population k (yijklm − yijkl· )
as response variable, and loge wing size within-generation sex mean
for each population k (xijklm − xijkl· ) and generation (t) as explana-
tory variables,

yijklm− yijkl•= bi
�
xijklm− xijkl•

�
+ aij

�
xijklm− xijkl•

�
t

+ cijk
�
xijklm− xijkl•

�
t+ dijkl

�
xijklm− xijkl•

�
+ «ijklm,

where the subscripts denote the same as in the model for selection
on the intercept. The random effects cijk give the deviation to the
treatment mean in the change of the allometric slope for each
population (nested within treatment), dijkl gives the deviation in
the allometric slope from the rest of the model for each gener-
ation l (nested within population), and «ijklm is the residual de-
viation of each fly. The random effects are assumed to be in-
dependent identically normally distributed, except dijkl, which is
distributed as dijkl in the model for the intercept.
Separate analyses of the unstarved and the starved populations

were conducted using this model.
For the change in slope after selection in the unstarved pop-

ulations, we wanted to estimate the following parameters: the
average slope in the first generation for each treatment j (up and
down selected) nested within sex i (bij), the linear change in the
allometric slope per generation of random mating t for each
treatment nested within sex (a1ij), and the change in allometric
slope per generation of random mating due to breakup of link-
age disequilibrium for each treatment nested within sex (a2ij).
We fitted the following random regression model:

yijklm− yijkl• = bij
�
xijklm− xijkl•

�
+ a1ij

�
xijklm− xijkl•

�
t

+ a2ij
�
xijklm− xijkl•

�ð1− rtÞ+cijk
�
xijklm − xijkl•

�
+ dijkl

�
xijklm− xijkl•

�
+ «ijklm,

where the subscripts denote the same as in the model for the se-
lection on the intercept. The effect of linkage disequilibrium is a
linear function of 1 – rt, where r is the average recombination
fraction, 0.365 in D. melanogaster (37), and t is number of gen-
erations of random mating. Hence, by including breakup of link-
age disequilibrium as a linear effect in our model, we obtain an
estimate of the asymptote at linkage equilibrium. The random
effect cijk gives the deviation of the treatment mean allometric
slope for each population (nested within treatment), dijkl gives
the deviation in the allometric slope from the rest of the model
for each generation l (nested within population), and «ijklm is the
residual deviation of each fly. The random effects are assumed to
be independent identically normally distributed.
To estimate the maximum fraction of the selection response

that was due to linkage disequilibrium in each sex (qi), we re-
placed the term a2ijðxijklm − xijkl•Þð1− rtÞ in the above random re-
gression model with  qiðxijklm − xijkl•Þð1− rtÞK. In this model, the
selection response in all treatments is scaled to 1 by using the
scaling factor K with values 0.327 and 0.365 for the females and
males, respectively, in the up-selection treatment, and −0.190
and −0.182 for the females and males, respectively, in the down-
selection treatment. The value of K is the difference between the
allometric slope in the starting generation and after selection
ended (generation 0 of relaxed selection). Hence, the parameter
qi is an estimate of the maximum average fraction of the total
selection response that is consistent with linkage disequilibrium
across treatments. The reason that this is the maximum fraction
is that natural selection in the laboratory environment could also
cause exponential decay.
To investigate the effect of starvation on the evolved slopes, we

subjected some of the larvae of the unstarved populations to the
starvation treatment one generation after selection ended. We
estimated the difference in allometric slope between the up- and
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down-selected populations both for starved and nonstarved flies
using analysis of covariance.

All analyses were done in R (50) using the packages lme4 (51)
and pedigreemm (52).

Controls

Down A

Down B

Up A

Up B

1.5*M0.75*M

Fig. S1. Change in wing shape with size (allometry) of the controls and the slope-selected populations relative to the isometric expectation (dotted red lines).
The two replicated down-selected populations are denoted “Down A” and “Down B,” and the two replicated up-selected populations are denoted “Up A” and
“Up B.” Shapes were constructed as point estimates of multivariate regressions of shape (i.e., 58 shape variables) on wing area evaluated at standard values
given by 0.75× median size of each population (Left) and 1.5× median size of each population (Right), then averaged over sexes and generations 21–24.
Isometric expectation is based on the shape at median size of each population, scaled by 0.75× and 1.5× at the lower and upper end, respectively. In the
control, the allometric relationship was slightly above 1, making the position of the landmark 4 (see Fig. S3) more proximal in small wings than in large wings
(position on each side of the isometric expectation). The decrease in the allometric slope in the down-selected populations reverses this effect; landmark 4
becomes more distal in small wings and more proximal in large wings. In the up-selected populations where the allometric slope is increased, the normal trend
is amplified, with landmark 4 becoming even more proximal in small wings and even more distal in large wings.

egraLllamS

Fig. S2. Response of wing-shape allometry to selection on the allometric slope. The image on the Left represents the mean shape of wings that are 0.75× the
median wing area, and the image on the Right represents the mean shapes of wings that are 1.5× the median wing area. Control is in gray and average
response of up-selected populations are in light blue and of down-selected populations are in dark blue. Shapes were constructed as in Fig. S1, but using the
median of the control as reference and averaged over replicated populations in addition to sexes and generations. All contours were scaled to the same size to
facilitate visualization of shape differences. The direct response to selection is best seen for the change in position of landmark 4 (see Fig. S3) relative to the
control. In up-selected populations with increased allometric slope, the position of landmark 4 is more distal in small wings and more proximal in large wings
relative to the control, whereas the opposite pattern is apparent in the down-selected populations with decreased allometric slope.
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Fig. S3. Picture of a D. melanogaster wing with landmarks. The 12 numbered landmarks are vein intersections and the humeral break in the costa (landmark 6).
The landmarks in gray are semilandmarks evenly spaced between each pair of landmarks on the outline. We used the distance between landmarks 4 and 6 as a
measure of L2 length. Landmark 11was not used because it is much less precisely estimated than landmark 6. In the selectedD. melanogaster populations, area was
estimated using the surveyor’s formula as the polygon bounded by landmark 6, the juncture of the costa with the vein L1, and the notch between the wing blade
and alula; six evenly spaced semilandmarks along the costa between the first two landmarks; and 24 evenly spaced semilandmarks along the wing margin between
the latter two landmarks. For the comparative data, we calculated wing area using the surveyor’s formula on the convex hull of a set of 16 evenly spaced points
along the spline curve of the wing outline, plus the landmark defining the humeral break. We used the square root of wing area as measure of wing size.

Table S1. Estimated evolutionary rates for allometric intercepts and slope using a
Brownian-motion model of evolution

Parameter Rate 95% confidence interval Unit

Depth of phylogeny 50 My
Allometric intercept 0.00180 0.00130–0.00241 (loge mm)2/My
Allometric slope 0.00138 0.00095–0.00196 slope2/My

Depth of phylogeny 133 My
Allometric intercept 0.00068 0.00049–0.00091 (loge mm)2/My
Allometric slope 0.00052 0.00036–0.00074 slope2/My

The depth of the phylogeny is highly uncertain; we therefore give the rates for phylogenies of two depths
(50 My or 133 My). The unit denoted slope is the proportional change in vein L2 length for a proportional
change in wing size, (loge mm)/(loge mm), or the elasticity of vein L2 length to wing size. Note that the rates are
given as increase in variance of traits over time. In Results and Discussion, we give the square root of the rates
(standard deviations), to increase interpretability. Because the intercept is on the natural log scale, the standard
deviation is approximately the coefficient of variation, and multiplying these values by 100 scales them as
percent of the trait mean.
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Table S2. Allometric parameters and the change in intercept during the intercept-selection
experiment

Parameter Estimate SE Unit

Males
Common intercept at t = 0 0.29520 0.00276 loge mm
Linear change per generation Control at t = 0–23 −0.00025 0.00018 (loge mm)/t
Linear change per generation Up Selection at t = 0–7 0.01998 0.00310 (loge mm)/t
Linear change per generation Down Selection at t = 0–7 −0.01353 0.00310 (loge mm)/t
Quadratic change per generation Up Selection at t = 0–7 −0.00114 0.00046 (loge mm)/t2

Quadratic change per generation Down Selection at t = 0–7 0.00059 0.00046 (loge mm)/t2

Linear change per generation Up Selection at t = 7–23 −0.00136 0.00059 (loge mm)/t
Linear change per generation Down Selection at t = 7–23 0.00014 0.00059 (loge mm)/t
Common static allometric slope 1.07830 0.00739 slope

Females
Common intercept at t = 0 0.45481 0.00276 loge mm
Linear change per generation Control at t = 0–23 −0.00053 0.00018 (loge mm)/t
Linear change per generation Up Selection at t = 0–7 0.01603 0.00310 (loge mm)/t
Linear change per generation Down Selection at t = 0–7 −0.01617 0.00310 (loge mm)/t
Quadratic change per generation Up Selection at t = 0–7 −0.00069 0.00046 (loge mm)/t2

Quadratic change per generation Down Selection at t = 0–7 0.00084 0.00046 (loge mm)/t2

Linear change per generation Up Selection at t = 7–23 −0.00136 0.00059 (loge mm)/t
Linear change per generation Down Selection at t = 7–23 0.00030 0.00059 (loge mm)/t
Common static allometric slope 1.09650 0.00736 slope

Generation is denoted t, and the unit denoted slope is the proportional change in vein L2 length for a
proportional change in wing size.

Table S3. Allometric slopes and their change during the slope-selection experiment

Parameter Estimate SE Unit

Males
Common slope at t = 0 1.08186 0.02145 slope
Linear change per generation Up Selection 0.01185 0.00561 slope/t
Linear change per generation Down Selection −0.00939 0.00561 slope/t
Linear change per generation Control 0.00062 0.00570 slope/t

Females
Common slope at t = 0 1.09302 0.02139 slope
Linear change per generation Up Selection 0.01265 0.00561 slope/t
Linear change per generation Down Selection −0.01185 0.00561 slope/t
Linear change per generation Control 0.00126 0.00570 slope/t

See Table S2 for explanation of units.

Table S4. Allometric slopes and their change during relaxed selection in the slope-selection
experiment

Parameter Estimate SE Unit

Males
Initial slope Up Selection 1.43663 0.05860 slope
Initial slope Down Selection 0.89016 0.05897 slope
Total change due to LD Up Selection −0.06487 0.09414 slope/(1 – rt)
Total change due to LD Down Selection 0.05153 0.09318 slope/(1 – rt)
Linear change per generation Up Selection −0.01614 0.00655 slope/t
Linear change per generation Down Selection 0.00499 0.00633 slope/t

Females
Initial slope Up Selection 1.40965 0.05661 slope
Initial slope Down Selection 0.89304 0.05902 slope
Total change due to LD Up Selection −0.02268 0.09194 slope/(1 – rt)
Total change due to LD Down Selection 0.06968 0.09429 slope/(1 – rt)
Linear change per generation Up Selection −0.01272 0.00633 slope/t
Linear change per generation Down Selection 0.00670 0.00646 slope/t

The constant r is the average recombination fraction in Drosophila melanogaster (0.365); LD, linkage dis-
equilibrium. See Table S2 for explanation of units.
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Table S5. Allometric slopes and their change in the slope-selected populations subjected to the
starvation treatment

Parameters Estimate SE Unit

Males
Common slope at t = 0 1.13597 0.00991 slope
Linear change per generation Control −0.00075 0.00146 slope/t
Linear change per generation Up Selection −0.00063 0.00139 slope/t
Linear change per generation Down Selection −0.00193 0.00140 slope/t

Females
Common slope at t = 0 1.12814 0.00966 slope
Linear change per generation Control 0.00028 0.00145 slope/t
Linear change per generation Up Selection −0.00059 0.00137 slope/t
Linear change per generation Down Selection −0.00169 0.00139 slope/t

See Table S2 for explanation of units.
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Table S6. Taxa included with total sample size (N)

Family Genus
Species

(subspecies)* Location of collection Source† Flies‡ N

Chloropidae Monochaetoscinella Sp. Tallahassee, FL Coll. Wild 48
Chloropidae Thaumatomyia Sp. Tallahassee, FL Coll. Wild 22
Drosophilidae Chymomyza procnemis Oahu, HI; Georgia SS 20000–2631.1 Lab 120
Drosophilidae Dettopsomyia nigrovittata Tallahassee, FL Coll. Wild 15
Drosophilidae Drosophila acutilabella Tallahassee, FL Coll. Wild, F1 205
Drosophilidae Drosophila affinis Tallahassee, FL Coll. Lab 209
Drosophilidae Drosophila algonquin Michigan, OH Coll. Lab (wild) 237
Drosophilidae Drosophila americana

(americana)
Chinook, MT SS 15010–0951.2 Lab 109

Drosophilidae Drosophila americana
(texana)

Morrilton, AR SS 15010–1041.23 Lab 215

Drosophilidae Drosophila ananassae Tallahassee area, FL;
south Georgia

Coll. Lab 235

Drosophilidae Drosophila arizonae Riverside, CA; Baja California,
Mexico; Tucson, AZ

Laura Reed Lab 275

Drosophilidae Drosophila athabasca Toronto, ON, Canada Coll. Lab 79
Drosophilidae Drosophila azteca Lassen, CA Coll. Lab 49
Drosophilidae Drosophila bifasciata Maggia, Ticino, Switzerland SS 14012–0181.1 Lab 217
Drosophilidae Drosophila busckii Tallahassee, FL Coll. Wild, F1 105
Drosophilidae Drosophila cardini Tallahassee area, FL Coll. Lab 210
Drosophilidae Drosophila elegans India J. David Lab 215
Drosophilidae Drosophila emarginata Huatusco, Veracruz, Mexico SS 14042–0841.6 Lab 232
Drosophilidae Drosophila equinoxialis Panama Coll. Lab 214
Drosophilidae Drosophila erecta unknown SS 14021–0224.0 Lab 193
Drosophilidae Drosophila eugracilis Palawan, Philippines SS 14026–0451.1 Lab 212
Drosophilidae Drosophila euronotus Tallahassee, FL Coll. F1, Lab (wild) 296
Drosophilidae Drosophila falleni Tallahassee, FL Coll. F1, F2 (wild) 277
Drosophilidae Drosophila ficusphila Khan-ing Tong, Taiwan SS 14025–0441.1 Lab 226
Drosophilidae Drosophila aff. florae Tallahassee, FL Coll. Wild, F1 210
Drosophilidae Drosophila funebris Pentwater, MI Coll. Lab (wild) 216
Drosophilidae Drosophila gaucha Montevideo, Uruguay J. David Lab 209
Drosophilidae Drosophila greeni Africa J. David Lab 206
Drosophilidae Drosophila guanche Tenerife, Canary Islands SS 14011–0095.0 Lab 209
Drosophilidae Drosophila guttifera Tallahassee, FL Coll. Wild, F1 99
Drosophilidae Drosophila hydei Tallahassee, FL Coll. Lab 134
Drosophilidae Drosophila immigrans Tallahassee, FL Coll. Lab 164
Drosophilidae Drosophila kikkawai India J. David Lab 213
Drosophilidae Drosophila lucipennis Chi-tou, Taiwan; Wulai, Taiwan SS 14023–0331.0;

14023–0331.1
Lab 245

Drosophilidae Drosophila macrospina Tallahassee, FL Coll. Wild, F1, F2 72
Drosophilidae Drosophila malerkotliana Tallahassee, FL Coll. Lab 220
Drosophilidae Drosophila mauritiana Mauritius J. David Lab 203
Drosophilidae Drosophila melanica Patagonia, AZ; northern Florida

and southern Georgia
SS 15030–1141.2 Lab 267

Drosophilidae Drosophila melanogaster Wabasso, FL Coll. Wild 247
Drosophilidae Drosophila mercatorum Asheville, NC Coll. Lab 209
Drosophilidae Drosophila micromelanica Smithville, TX SS 15030–1151.1 Lab 155
Drosophilidae Drosophila mimetica Southeast Asia John True Lab 19
Drosophilidae Drosophila mojavensis Baja California, Mexico; California Laura Reed Lab 163
Drosophilidae Drosophila mulleri central-east Florida Coll. Lab 195
Drosophilidae Drosophila nasuta Gabon, Africa J. David Lab 196
Drosophilidae Drosophila nebulosa south Florida Coll. Lab 212
Drosophilidae Drosophila neocordata Minas Gerais, Brazil SS 14041–0831.0 Lab 217
Drosophilidae Drosophila neotestacea Rochester, NY; northern Georgia Coll. Lab; Wild, F1 208
Drosophilidae Drosophila nigromelanica Tallahassee, FL Coll. Wild, F1 204
Drosophilidae Drosophila nikananu Ivory Coast SS 14028–0601.0 Lab 209
Drosophilidae Drosophila occidentalis Madera County, CA Coll. Wild, F1, F2 205
Drosophilidae Drosophila paramelanica Pentwater, MI; Smokemont, NC SS 15030–1161.2 Lab 323
Drosophilidae Drosophila paulistorum Central America SS 14030–0771.13 Lab 201
Drosophilidae Drosophila peninsularis central Florida Coll. Lab 206
Drosophilidae Drosophila persimilis Mount St. Helena, CA Jody Hey Lab 55
Drosophilidae Drosophila pictiventris Great Inagua, Bahamas SS 12000–0072.0 Lab 112
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Table S6. Cont.

Family Genus
Species

(subspecies)* Location of collection Source† Flies‡ N

Drosophilidae Drosophila pinicola Lassen, CA Coll. Lab 202
Drosophilidae Drosophila pseudoobscura

(bogotana)
Sutatausa, Susa, Potosi, Colombia Jody Hey Lab 73

Drosophilidae Drosophila pseudoobscura
(pseudoobscura)

Tucson, AZ SS 14011–0121.0 Lab 198

Drosophilidae Drosophila putrida Tallahassee, FL Coll. Wild, F1 210
Drosophilidae Drosophila recens Calamity Pond, NY; Deer Isle, ME;

Big Moose, NY
Coll. Lab 224

Drosophilidae Drosophila repleta Tallahassee, FL Coll. Wild, F1, Lab 217
Drosophilidae Drosophila robusta Tallahassee, FL Coll. Lab 101
Drosophilidae Drosophila saltans San Jose, Costa Rica SS 14045–0911.0 Lab 181
Drosophilidae Drosophila santomea Sao Tome y Principe SS Lab 205
Drosophilidae Drosophila sechellia Seychelles J. David Lab 210
Drosophilidae Drosophila seguyi Africa J. David Lab 210
Drosophilidae Drosophila simulans Tallahassee, FL Coll. Lab 195
Drosophilidae Drosophila stalkeri Guantanamo Bay, Cuba SS 15081–1451.10 Lab 203
Drosophilidae Drosophila sturtevanti south Florida Coll. Wild, Lab 223
Drosophilidae Drosophila subobscura Gif-sur-Yvette, France G. Gilchrist Gilchrist

et al. (42)
69

Drosophilidae Drosophila sulfurigaster
(albostrigata)

Siem Reap, Cambodia SS 15112–1811.4 Lab 209

Drosophilidae Drosophila sulfurigaster
(bilimbata)

Tantalus, Oahu, HI SS 15112–1821.0 Lab 224

Drosophilidae Drosophila sulfurigaster
(sulfurigaster)

Queensland, Australia SS 15112–1831.0 Lab 210

Drosophilidae Drosophila takahashii Nepal, Asia SS 14022–0311.0 Lab 198
Drosophilidae Drosophila testacea Germany unknown Lab 40
Drosophilidae Drosophila tripunctata Tallahassee, FL; Pentwater, MI Coll. Wild, Lab 218
Drosophilidae Drosophila virilis Pasadena, CA SS 15010–1051.0 Lab 199
Drosophilidae Drosophila willistoni northern Florida Coll. Lab 268
Drosophilidae Drosophila yakuba Ivory Coast, Africa SS 14021–0261.0; Lab 209
Drosophilidae Hirtodrosophila duncani Tallahassee, FL; Kalamazoo, MI Coll. F1, F2, Lab (wild) 219
Drosophilidae Hirtodrosophila Sp. south Florida Coll. Lab 240
Drosophilidae Hirtodrosophila thoracis Tallahassee area, FL Coll. Wild, F1 352
Drosophilidae Idiomyia biseriata Mount Kaala, Oahu, HI SS 15291–2551.1 Lab 210
Drosophilidae Idiomyia crucigera Pupukea, Oahu, HI SS 15287–2531.0 Lab 211
Drosophilidae Idiomyia eurypeza Kumuwela, Kauai, HI SS 15290–2581.0 Lab 210
Drosophilidae Idiomyia grimshawi Auwahi, Maui, HI SS 15287–2541.0 Lab 190
Drosophilidae Idiomyia gymnobasis Auwahi, Maui, HI SS 15284–2501.0 Lab 209
Drosophilidae Idiomyia mimica Kipuka Ki, HI SS 15292–2561.0 Lab 216
Drosophilidae Idiomyia soonae Pawaina, HI SS 15290–2591.0 Lab 212
Drosophilidae Leucophenga Sp. central Florida Coll. Wild 10
Drosophilidae Leucophenga varia Tallahassee, FL Coll. Wild 29
Drosophilidae Mycodrosophila claytonae Tallahassee area, FL Coll. Wild, F1 197
Drosophilidae Mycodrosophila dimidiata Tallahassee area, FL Coll. Wild 208
Drosophilidae Samoaia leonensis Samoaia SS 80000–2761.03 Lab 201
Drosophilidae Scaptodrosophila deflexa France J. David Lab 201
Drosophilidae Scaptodrosophila dorsocentralis Japan J. David Lab 85
Drosophilidae Scaptodrosophila latifasciaeformis north and central Florida Coll. Wild, Lab 204
Drosophilidae Scaptodrosophila lebanonensis

(casteeli)
Veyo, Utah SS 11010–0011.0 Lab 207

Drosophilidae Scaptodrosophila lebanonensis
(lebanonensis)

Beirut, Lebanon SS 11010–0021.0 Lab 211

Drosophilidae Scaptodrosophila stonei Tehran, Iran SS 11010–0041.1 Lab 210
Drosophilidae Scaptomyza adusta north Florida; south Georgia Coll. Lab (wild) 235
Drosophilidae Scaptomyza palmae Kahala Mountains, HI SS 33000–2681.1 Lab 212
Drosophilidae Zaprionus ghesquierei Gabon, Africa J. David Lab 224
Drosophilidae Zaprionus indianus Brazil J. David Lab 208
Drosophilidae Zaprionus inermis Koutaba, Cameroun SS 50000–2746.0 Lab 148
Drosophilidae Zaprionus sepsoides Kongo SS 50000–2744.0 Lab 200
Drosophilidae Zaprionus Sg. Anaprionus India J. David Lab 200

Bolstad et al. www.pnas.org/cgi/content/short/1505357112 9 of 10

www.pnas.org/cgi/content/short/1505357112


Table S6. Cont.

Family Genus
Species

(subspecies)* Location of collection Source† Flies‡ N

Ephydridae Discocerina obscurella Leon County, FL Coll. Wild 34
Lauxaniidae Homoneura Sp. Tallahassee, FL Coll. Wild 70
Lauxaniidae Neogriphoneura Sordida Tallahassee, FL Coll. Wild 68

*Sg., species identified to subgenus; Sp., unknown species.
†Coll., collected by members of the Houle laboratory; SS, species obtained from the US Drosophila Species Stock Center. Number following is the stock number.
Other stocks were obtained through the generosity of Jean David, Jody Hey, Laura Reed, and John True. George Gilchrist furnished images of wings of
D. subobscura from Gilchirst et al. (42).
‡F1 (F2), offspring (grand-offspring) of wild collected flies; Lab, flies measured after multiple generations in laboratory culture. Wild, flies measured captured in
the wild.
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